\(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx\) [17]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 113 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {a^2 (2 A+3 B) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^2 (5 A+6 B) \tan (c+d x)}{3 d}+\frac {a^2 (4 A+3 B) \sec (c+d x) \tan (c+d x)}{6 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

[Out]

1/2*a^2*(2*A+3*B)*arctanh(sin(d*x+c))/d+1/3*a^2*(5*A+6*B)*tan(d*x+c)/d+1/6*a^2*(4*A+3*B)*sec(d*x+c)*tan(d*x+c)
/d+1/3*A*(a^2+a^2*cos(d*x+c))*sec(d*x+c)^2*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3054, 3047, 3100, 2827, 3852, 8, 3855} \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {a^2 (2 A+3 B) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^2 (5 A+6 B) \tan (c+d x)}{3 d}+\frac {a^2 (4 A+3 B) \tan (c+d x) \sec (c+d x)}{6 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d} \]

[In]

Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a^2*(2*A + 3*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a^2*(5*A + 6*B)*Tan[c + d*x])/(3*d) + (a^2*(4*A + 3*B)*Sec[c
+ d*x]*Tan[c + d*x])/(6*d) + (A*(a^2 + a^2*Cos[c + d*x])*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int (a+a \cos (c+d x)) (a (4 A+3 B)+a (A+3 B) \cos (c+d x)) \sec ^3(c+d x) \, dx \\ & = \frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int \left (a^2 (4 A+3 B)+\left (a^2 (A+3 B)+a^2 (4 A+3 B)\right ) \cos (c+d x)+a^2 (A+3 B) \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx \\ & = \frac {a^2 (4 A+3 B) \sec (c+d x) \tan (c+d x)}{6 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{6} \int \left (2 a^2 (5 A+6 B)+3 a^2 (2 A+3 B) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx \\ & = \frac {a^2 (4 A+3 B) \sec (c+d x) \tan (c+d x)}{6 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{2} \left (a^2 (2 A+3 B)\right ) \int \sec (c+d x) \, dx+\frac {1}{3} \left (a^2 (5 A+6 B)\right ) \int \sec ^2(c+d x) \, dx \\ & = \frac {a^2 (2 A+3 B) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^2 (4 A+3 B) \sec (c+d x) \tan (c+d x)}{6 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\left (a^2 (5 A+6 B)\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d} \\ & = \frac {a^2 (2 A+3 B) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a^2 (5 A+6 B) \tan (c+d x)}{3 d}+\frac {a^2 (4 A+3 B) \sec (c+d x) \tan (c+d x)}{6 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.56 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {a^2 \left ((6 A+9 B) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (12 (A+B)+3 (2 A+B) \sec (c+d x)+2 A \tan ^2(c+d x)\right )\right )}{6 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a^2*((6*A + 9*B)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(12*(A + B) + 3*(2*A + B)*Sec[c + d*x] + 2*A*Tan[c + d*
x]^2)))/(6*d)

Maple [A] (verified)

Time = 4.12 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.06

method result size
parts \(-\frac {A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (A \,a^{2}+2 B \,a^{2}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (2 A \,a^{2}+B \,a^{2}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {B \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right ) a^{2}}{d}\) \(120\)
derivativedivides \(\frac {A \,a^{2} \tan \left (d x +c \right )+B \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 B \,a^{2} \tan \left (d x +c \right )-A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+B \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(145\)
default \(\frac {A \,a^{2} \tan \left (d x +c \right )+B \,a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+2 A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 B \,a^{2} \tan \left (d x +c \right )-A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+B \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(145\)
parallelrisch \(\frac {2 \left (-\frac {3 \left (\frac {3 B}{2}+A \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {3 \left (\frac {3 B}{2}+A \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+\left (A +\frac {B}{2}\right ) \sin \left (2 d x +2 c \right )+\left (\frac {5 A}{6}+B \right ) \sin \left (3 d x +3 c \right )+\frac {3 \sin \left (d x +c \right ) \left (A +\frac {2 B}{3}\right )}{2}\right ) a^{2}}{d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(147\)
risch \(-\frac {i a^{2} \left (6 A \,{\mathrm e}^{5 i \left (d x +c \right )}+3 B \,{\mathrm e}^{5 i \left (d x +c \right )}-6 A \,{\mathrm e}^{4 i \left (d x +c \right )}-12 B \,{\mathrm e}^{4 i \left (d x +c \right )}-24 A \,{\mathrm e}^{2 i \left (d x +c \right )}-24 B \,{\mathrm e}^{2 i \left (d x +c \right )}-6 A \,{\mathrm e}^{i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}-10 A -12 B \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}-\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}-\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 d}+\frac {A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}+\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 d}\) \(214\)
norman \(\frac {-\frac {2 a^{2} \left (2 A -3 B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2} \left (2 A +3 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {a^{2} \left (2 A +3 B \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a^{2} \left (2 A +5 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2} \left (6 A +5 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {a^{2} \left (38 A +21 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {a^{2} \left (2 A +3 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{2} \left (2 A +3 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(242\)

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

-A*a^2/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+(A*a^2+2*B*a^2)/d*tan(d*x+c)+(2*A*a^2+B*a^2)/d*(1/2*sec(d*x+c)*tan
(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+1/d*B*ln(sec(d*x+c)+tan(d*x+c))*a^2

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.11 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {3 \, {\left (2 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (2 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (5 \, A + 6 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + 2 \, A a^{2}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/12*(3*(2*A + 3*B)*a^2*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(2*A + 3*B)*a^2*cos(d*x + c)^3*log(-sin(d*x +
 c) + 1) + 2*(2*(5*A + 6*B)*a^2*cos(d*x + c)^2 + 3*(2*A + B)*a^2*cos(d*x + c) + 2*A*a^2)*sin(d*x + c))/(d*cos(
d*x + c)^3)

Sympy [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=a^{2} \left (\int A \sec ^{4}{\left (c + d x \right )}\, dx + \int 2 A \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int 2 B \cos ^{2}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

a**2*(Integral(A*sec(c + d*x)**4, x) + Integral(2*A*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(A*cos(c + d*x)
**2*sec(c + d*x)**4, x) + Integral(B*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(2*B*cos(c + d*x)**2*sec(c + d
*x)**4, x) + Integral(B*cos(c + d*x)**3*sec(c + d*x)**4, x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.54 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{2} - 6 \, A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 3 \, B a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, B a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{2} \tan \left (d x + c\right ) + 24 \, B a^{2} \tan \left (d x + c\right )}{12 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^2 - 6*A*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x +
 c) + 1) + log(sin(d*x + c) - 1)) - 3*B*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log
(sin(d*x + c) - 1)) + 6*B*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*A*a^2*tan(d*x + c) + 24*B*a
^2*tan(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.58 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {3 \, {\left (2 \, A a^{2} + 3 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (2 \, A a^{2} + 3 \, B a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 16 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 18 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

1/6*(3*(2*A*a^2 + 3*B*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*A*a^2 + 3*B*a^2)*log(abs(tan(1/2*d*x + 1/
2*c) - 1)) - 2*(6*A*a^2*tan(1/2*d*x + 1/2*c)^5 + 9*B*a^2*tan(1/2*d*x + 1/2*c)^5 - 16*A*a^2*tan(1/2*d*x + 1/2*c
)^3 - 24*B*a^2*tan(1/2*d*x + 1/2*c)^3 + 18*A*a^2*tan(1/2*d*x + 1/2*c) + 15*B*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/
2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 1.30 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.28 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx=\frac {2\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (A+\frac {3\,B}{2}\right )}{d}-\frac {\left (2\,A\,a^2+3\,B\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {16\,A\,a^2}{3}-8\,B\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (6\,A\,a^2+5\,B\,a^2\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/cos(c + d*x)^4,x)

[Out]

(2*a^2*atanh(tan(c/2 + (d*x)/2))*(A + (3*B)/2))/d - (tan(c/2 + (d*x)/2)*(6*A*a^2 + 5*B*a^2) + tan(c/2 + (d*x)/
2)^5*(2*A*a^2 + 3*B*a^2) - tan(c/2 + (d*x)/2)^3*((16*A*a^2)/3 + 8*B*a^2))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c
/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))